×
Loading ...

Como calcular a medida do ângulo central de um polígono regular de dez lados

Atualizado em 21 fevereiro, 2017

Um ângulo central de um polígono é o ângulo criado a partir do ponto central dele até dois vértices adjacentes. Um polígono regular é definido como uma figura em que todos os lados e os ângulos interiores são congruentes ou iguais. Um polígono de dez lados é chamado de dodecágono; encontrar um ângulo central de um dodecágono requer uma fórmula que é utilizada para todos os polígonos regulares.

Instruções

  1. Desenhe um dodecágono no seu papel. O polígono terá dez lados iguais de comprimento.

    Loading...
  2. Coloque um ponto central no interior do dodecágono.

  3. Desenhe todos os ângulos centrais possíveis no polígono usando uma régua. Haverá dez ângulos que serão criados e a figura será semelhante a uma pizza cortada em pequenas formas triangulares.

  4. Desenhe um círculo de qualquer tamanho em torno do ponto central do polígono. Um círculo é um polígono que contém 360 graus; isto mostrará a soma de todos os ângulos centrais igual a 360 graus.

  5. Divida 360, que é total de todos os ângulos centrais, por 10, que é número de ângulos centrais, para encontrar o ângulo de um dos ângulos centrais. Em um dodecágono, cada ângulo central é igual a 36 graus.

Loading...

Dicas

  • Ao completar esse cálculo, você também pode determinar os ângulos internos dos dodecágonos. Um triângulo criado pelo ângulo central tem ângulos em um total de 180 graus. Subtraia o ângulo central e divida por 2 para encontrar os ângulos internos do dodecágono -- 180 - 36 / 2 = 72 graus.

Aviso

  • Esta fórmula funciona em ângulos centrais somente de polígonos regulares.

O que você precisa

  • Régua

Referências

Loading ...
Loading ...